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Abstract--An inverse problem utilizing the conjugate gradient method of minimization with adjoint 
problem is used to estimate the timewise variation of the inlet temperature of a thermally developing, 
hydrodynamically developed laminar flow between parallel plates by utilizing transient temperature 
measurements from a single thermocouple located downstream of the entrance. It is assumed that there is 
no prior information available on the functional form of time dependence of the inlet temperature other 
than that which can be inferred from the measured downstream temperatures. The effects of functional 
form of the inlet temperature, sensor position, magnitude of measurement error and data sampling rate on 
the accuracy of estimates are examined. In order to examine the accuracy of the method under most strict 
conditions, timewise variations in the form of step changes were also studied. The inverse analysis considered 
here could predict the timewise variation of inlet temperature even under such strict conditions. The 

estimates are notably more accurate when the thermocouple is placed near the entrance. 

1. INTRODUCTION 

Estimating the time-varying inlet condition for forced 
convective flow in ducts can be of great interest to the 
engineer. Often, one may not know the actual inlet 
condition or not be able to measure it directly at the 
inlet of the duct, yet this may be of utmost importance 
in controlling the operation of a process upstream. 
Only a small amount of work is available in the area 
of inverse analysis of estimating the unknown inlet 
temperature of flow inside ducts. The steady-state 
problems of estimating spatially varying wall heat flux 
is considered in ref. [1], the estimation of the inlet 
condition for steady flow in a duct in ref. [2], and the 
estimation of spatially varying wall temperature and 
heat flux for free convective flows in ref. [3]. In the 
transient problem considered here, only one ther- 
mocouple located at the centerline is used, and many 
time measurements, varying from 100 to 200 readings, 
are taken. Tests were also conducted by varying the 
location of the thermocouple. 

In this work the conjugate gradient method of min- 
imization with adjoint problem is used to estimate 
the inlet temperature by utilizing simulated measured 
temperatures at some downstream location without 
any prior information on the functional form of the 
inlet condition. 

2. ANALYSIS 

The inverse analysis of function estimation pre- 
sented here utilizes the conjugate gradient method of 
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minimization which requires the solution of the direct 
problem, the sensitivity problem and the adjoint prob- 
/em as discussed in refs. [4, 5]. The direct problem 
is a well-posed problem when the inlet temperature 
distribution function, F(z) is known; however, when 
F(T) is unknown and to be determined from the 
measurements taken at some downstream location 
inside the duct at various times, the problem becomes 
an inverse problem which is ill-posed. Each of these 
three distinct problems are described below before 
presenting the general algorithm to solve the inverse 
problem. 

2.1. Direct problem 
Consider laminar forced convection inside a parallel 

plate duct with the walls and the fluid at a constant 
uniform prescribed temperature. At time z = 0, the 
inlet temperature, ®(0, R, z) begins to vary as a func- 
tion of time in the form, F(z). Figure 1 describes the 
geometry and coordinates. 

The velocity profile is given in the dimensionless 
form as 

3(I-R~).  (l) U(R)  = ; 

Neglecting axial conduction and free convection in 
the flow, the energy equation is written as 

O 0 ( Z , R , ' ~ )  _ d 2 0 ( Z ,  R ,  "r) + U(R) dO(Z, R, z) 
dr dZ dR z 

(2a) 
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NOMENCLATURE 

F k current estimate of inlet temperature ff  
F(z) [ f ( t ) -  Ti]/Ti, dimensionless inlet A® 

temperature 
f ( t )  functional form of inlet temperature 6 

variation e 
J(F) functional, defined by equation (3) 7 k 
J'(z) gradient of functional 
L channel half-width 
pk direction of descent at the kth iteration 

defined by equation (11) 
R y/L, dimensionless normal coordinate 
R* measurement location in R-direction a 
t time z 
T~ initial temperature oJ 
U(R) 3(1 - R : ) ,  dimensionless velocity 
u(y) 3 iUm(1 -- ty/L)2), velocity 
Um (-- L2/2#)dP/dx 
x axial coordinate in flow direction 
y normal coordinate 
Y dimensionless measured temperature 
Z otX/urnL 2, dimensionless flow direction 

coordinate 
Z* measurement location in Z-direction. 

Greek symbols 
a thermal diffusivity 

step size defined by equation (14) 
sensitivity function defined by problem 
(4) 
Dirac-delta function 
convergence criteria 
conjugate coefficient at the kth 
iteration defined by equation (10) 

2(z, R, Z) adjoint function defined by 
problem (6) 

® [T(x, y, t) - Ti]/Ti, dimensionless 
temperature 
standard deviation of measurement 
ctt/L2, dimensionless time 
random variable. 

Superscripts 
k number of iteration 
* measurement location. 

Subscripts 
f total extent of variable (i.e. zr or Zs) 
m mean value. 

for 0 < R < 1, Z > 0, z > 0. The associated boundary 
conditions are taken as 

O0(Z, O, ~) 
- 0  a t R = 0  Z > 0  r > 0  

OR 

O ( Z , I , z ) = 0  a t R = l  Z > 0  ~ > 0  

® ( O , R , z ) = F ( z )  a t Z = 0  0 ~ < R < I  z > 0  

and the initial condition as 

® ( Z , R , 0 ) = 0  a t z = 0  0 < R < I  Z>~0 

where various dimensionless terms are defined as 

T(x, y, t) - Ti ctt 
T~ L 2 

y ax 
R = -L Z = UmL2 

u(y) f(t) -- T~ 
U(R) = - -  F(~)=~ 

Urn Ti 

(2b) Here ct is the thermal diffusivity of the fluid, Um is the 
mean velocity and T~ is the initial temperature. 

(2c) The direct problem, defined by equation (2), will be 
solved by finite differences, using an implicit upwind 

(2d) scheme. 

Tw=O 

LL L 
II = ~ -_~ (Z*,R') 

= U(R)f] 
o" _7 

.,7 

R~ 

. . . .  C L - -  ! 

~ensor Location 

Tw=O 

Fig. 1. Geometry and coordinates. 

(2e) 
2.2. Sensitivity problem 

When the inlet condition F(Q is unknown, problem 
(2) becomes an inverse problem, and its solution can 
be recast as a problem of optimal control, i.e. choose 
the control function, F(r), which minimizes the fol- 
lowing functional, J :  

J[F(~)I = [®(Z*, R*, ~ ; f ( ~ ) ) -  Y(Z*, R*, r)l 2 dr 

(3) 

where ®(Z*, R*, z ; F(~)) is the estimated temperature 
at the measurement location [R*, Z*], based on the 
current estimation of the inlet temperature, F(~), while 
Y(Z*, R*, ~) is the measured temperature at the same 
location. Let us now assume that F(z) changes by an 
increment AF, and as a result the temperature, ®, 
also changes by the amount A®. We now substitute 
® + A® and F +  AF into the original problem defined 
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by equation (2), and subtract from the resulting sys- 
tem those given by equation (2) to produce the fol- 
lowing sensitivity problem : 

OA(~(Z, R, "r) + U(R) g3A~)(Z, R, z) 6q2Al~(Z, R, "r) 

OI ~ Z  ~3R 2 

i n 0 < R <  1 , Z > 0 ,  v > 0 ,  with 

OAO(Z, O, r) 
t3R 

- 0  a t R = 0  

A O ( Z , I , z ) = 0  a t R =  1 

AO(0, R, z) -- AF(z) a t Z = 0  

(4a) 

Z > 0  z > 0  (4b) 

Z > 0  t > 0  (4c) 

0 < R < I  v > 0  

(4d) 

and 

A ® ( Z , R , 0 ) = 0  a t z = 0  0 < R < I  Z~>0. (4e) 

The sensitivity problem defined by equation (4) will 
be solved by the same method as that used for the 
solution of the direct problem described previously. 

2.3. Adjoint problem 
The adjoint problem is obtained by multiplying 

equation (2a) by the adjoint function 2(z, Z, R), inte- 
grating the resulting expression over the time and 
space domain and adding the result to the functional 
given by equation (3). Hence, 

J[F(Q] = f s [O(Z*,R*, F(z)) 
de- 0 

- Y(Z*, R*, r)]: d r +  2(z, Z, R) 
d~=OdZ=o = 0  

x -~ + U(R) OZ dRdZdz. (5) 

Note that, when ®(Z, R,z) is the exact solution of 
problem (2), the last term on the right hand side of 
equation (5) vanishes and the original functional (3) 
is recovered. 

We now perturb F(z) by AF(z) and O by A® in 
equation (5), and subtract equation (5) from the 
resulting expression to get the variation, A J, of the 
functional J. By employing integration by parts and 
utilizing the boundary conditions from the sensitivity 
problem and also requiring that the coefficients of A® 
in the resulting equation should vanish, the following 
adjoint problem is generated: 

2[®(Z, R, z) - Y(Z, R, r )16(Z-  Z*)6(R- R*) 

02(~, z ,  R) g2(r, Z, R) 
O~ - U ( R )  ~ Z  

022(~, Z, R) 
= 0 (6a) 

OR 2 

where 6( ) is the Dirac-delta function. The boundary 
conditions become 

02(~, Z, O) 
- - = 0  a t R = 0  Z > 0  z > 0  

OR 

2(r,Z, 1 ) = 0  a t R = l  Z > 0  z > 0  

2(z, Zj, R ) - 0  a t Z = Z j  0 < R < I  z > 0  (6b) 

and the final time condition at z = zt is given by 

2(zj, Z , R ) = 0  a t r = r l  0 < R < I  Z>~0. (6c) 

Then the following integral term is left : 

AJ[F(z)] = - fi'= oAF(z) 

×[Ii=o2("r,O,R)U(R)dR]dz. (7) 

When the function is considered to be square inte- 
grable, the following relation holds [4]: 

AJ[F(z)] = J'(QAF(Q dz. (8) 
=0 

A comparison of equations (7) and (8) reveals that 
the gradient of the functional, f ( O ,  is 

J'(z) = - I '  )~(r, O, R) U(R) dR. (9) 
dR =0 

The adjoint problem is different from the direct prob- 
lem in that the current estimate, ®(Z, R, ~), minus 
measured temperature, Y(Z, R, z), is a source term in 
equation (6a). Also, the final time condition, ry, and 
final space condition, Zj, are specified instead of a 
usual initial and inlet condition. However, with the 
replacement of the time variable by ~ = r j - ~  and the 
space variable by Z = Z s -  Z, a standard type problem 
can be produced which can be solved by using the 
finite difference approach referred to previously. 

2.4. The conjugate gradient method of minimization 
The following iterative procedure is suggested [5] 

for the inverse problem, assuming that the functions 
®(Z, R, ~), A®(Z, R, z), 2(z, Z, R) and J'(~) are avail- 
able at the kth iteration : 

Fk+~ =Fk--flkPk k = 0 , 1 , 2  . . . .  (10) 

where W -= W[F(T)] is the direction of descent deter- 
mined from the combination of the gradient at the kth 
step, and the descent direction at the ( k -  l)th step in 
the form 

pk = (j,)k +7~pk-I" (11) 

Here, 7 k is the conjugate coefficient and is computed 
from the expression 

Ii j [J'k(z)]2 dz 
=0 

7 k - ' withy ° = 0. (12) 

f f  [J'k- 1 (Z)]2 dz 
=0 
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The coefficient ilk, which determines the step size in 
going from F k to F k+ ~, is computed by minimizing 
J(F k+ ~) with respect to ilk, i.e. 

mjn J(F k+' ) mjn ; '  = [®(F*- f l*Pk) -  y]2 dr 
= 0  

which produces 

i ' AO(Pk)[O(F k ) -  Y] dr 
= 0  

fl k - -  • 

f ' [A®(Pk)] 2 dr 
= 0  

2.5. The stopping criterion 
In all practical experimental situations it is expected 

that some error will be introduced into the measure- 
ments. The discrepancy principal [6] is used to ter- 
minate the iteration process suggested by equation 
(10). Assuming that ®(Z*, R*, r) - Y(Z*, R*, r) ~- ~, 
where a is the standard deviation of measurements, 
has a constant value for all measurements, we sub- 
stitute this result into equation (3) to obtain 

I 
j = ¢2 dr = a2Zl - -  g2 

= 0  

where e 2 is the desired stopping criterion. The iter- 
ations are stopped when J < e2. 

2.6. The computational algorithm 
The computational procedure for this inverse prob- 

lem can be summarized in the following algorithm : 

Assuming that an estimate of F(r) is available at the 
kth iteration, 

Step 9---check if the stopping criterion is met ; if 
not, return to Step 1. 

3. RESULTS AND DISCUSSION 

To illustrate the accuracy of the inverse algorithm 
in predicting F(r), we examine three functional test 

(13) cases; a triangular ramp, a double step, and a sine 
curve, as illustrated in Fig. 2. The first two represent 
very difficult functions to predict due to the dis- 
continuities present in the function. As the sine curve 
is smooth and continuous, its estimation should not 

(14) pose difficulty. Over the total experiment time of 
3.6 x 10 3 in dimensionless terms, 200 equal time steps 
are considered, corresponding to a sampling fre- 
quency of 1.8 × 10 -5. The total dimensionless length 
of the duct, taken as 8.2 × 10 -3, with 60 equal divisions 
corresponding to AZ = 1.367× 10 4, was long 
enough for all test locations to lay in the thermally 
developing region. A representative total time and 
total length in dimensional terms are t/= 30 s, and 
x/- = 1.64 m for air with a mean velocity of 2.4 cm s- 
in a duct with half width L = 0.5 m. The sensors 
are placed on the centerline (R* -- 0) of the duct at 
downstream locations, Z * =  5AZ and 20AZ. The 
centerline was chosen for all measurements in order 
to minimize the effects of the wall temperature on the 
reading of the sensor at the measurement location. 

(15) The simulated measured experimental temperature 
data, Y, ....... d, are generated by adding an error term, 
coa, to the exact temperature ®exac, obtained from the 
solution of the direct problem (2) as 

Ym . . . . . .  d = ® ..... +coa (16) 

where a is the selected standard deviation for the 
measured data. The random variable co is calculated 
by the IMSL subroutine DRNNOR [7] and chosen to 
lie in the range of -2 .576 < co < 2.576 which rep- 
resents a 99% confidence bound for the measured 
temperature. 

Step 1--solve the direct problem given by equation 
(2), and compute the temperature at the 
measurement location [Z*, R*], 

Step 2--knowing ®(Z*,R*,r)  and the measured 
temperatures, Y(Z*, R*, r), compute the 
adjoint function 2(r, 0, R) from the solu- 
tion of the adjoint problem given by equa- 
tion (6), 

Step 3--given 2(r, 0, R), calculate J '  from equation 
(9), 

Step ~ o m p u t e  the conjugate coefficient, 7 k, from 
equation (12), 

Step 5----calculate the direction of descent, pk, from 
equation (11), 

Step 6~setting p k =  AF(r), solve the sensitivity 
problem given by equation (4), for A®, 

Step 7----compute the step size, ilk, from equation 
(14), 

Step 8---compute Fk+~(r) from equation (10), 

Test case 1 : triangular ramp&g function 
The time-dependent inlet condition for a triangular 

ramp function illustrated in Fig. 2a is assumed to vary 
in the form 

I l l l l . l l r  for 0 < r ~ < 9 . 2 × 1 0  4 

~ - 8 3 3 . 3 3 ( r - 9 × 1 0  4)+1 

F ( r ) =  for 9.2×10 4 < z ~ < l . 5 1 x 1 0 - 3  (17) 
! 

L 0.5 for 1.51×10 -3 <z~<Z/. 

Figure 3 shows typical measured temperatures at two 
different downstream locations for ~ = 0.01, which 
correspond to approx. 3% measured error based on 
the maximum measured temperature. These curves 
show that the steady measured value is achieved after 
a certain time period. The inverse problem is based 
on all data taken before the steady temperature has 
been reached, since the measured data taken after 
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Time, 17 
(e) 

Fig. 2. Three test cases considered for the inlet temperature functions to examine the accuracy of inverse 
analysis : (a) triangular ramp ; (b) double step ; and (c) sine curve. 
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Time, x 

Fig. 3. Simulated measured temperatures at downstream 
locations 5AZ and 20AZ for triangular ramp pulse, with 

a = 0.01. 

the es tabl i shment  of  the steady state cont r ibute  no 
addi t ional  informat ion .  Unde r  actual  measurement  
condit ions,  this reasoning would mos t  likely be used 
to determine the s topping time of  the experiment.  
Also, we chose the steady value of  the measured  tem- 
pera ture  as the initial guess for the computa t iona l  
algori thm. This  choice alleviates one of  the difficulties 
associated with the conjugate  gradient  method,  tha t  
is, the final t ime value of  the es t imat ion is the same as 
the initial guess [1]. 

Figure 4 il lustrates the effects of  the s tandard  devi- 

at ions o = 0.01 and  a = 0.03, on  the accuracy of  the 
estimates by inverse analysis. Here the solid lines rep- 
resent the exact solution.  These s tandard  deviat ions 
represent  3% and  10% measurement  e r ror  based on 
the m a x i m u m  temperature .  It is clear that ,  as error  
increases, the accuracy of  the predict ion decreases;  
however,  even the a = 0.03 est imate is quite good. 
Figure 5 shows the effects of  measurement  locat ion 
on  the accuracy of  the est imation.  The 5AZ location,  
which is close to the entrance,  produces  more  accurate  
results, as expected. The  20AZ locat ion shows a 
marked  decrease in accuracy, part icular ly near  the 
discont inui ty  in slope, with the est imate oscillating 
a round  the exact funct ion elsewhere. 

Test case 2 : double step funct ion 
The inlet condi t ion  for a double  step funct ion illus- 

t ra ted in Fig. 2b is assumed in the form 

t i  for 0 < z ~ < 8 . 2 x 1 0  4 
F(r)  = .5 for 8.2 × 10 -4 < "c ~< 1.22 × 10 -3 (18) 

for 1 . 2 2 x 1 0  3 < r ~ < z l  

which represents  a very strict test for the inverse analy-  
sis. Figure 6 shows typical measured  tempera tures  at  
Z = 5AZ and  20AZ downs t ream locat ions for 
a = 0.01, while Fig. 7 compares  the results of  the 
inverse solutions at  Z = 5AZ and  20AZ downs t ream 

. . . .  , . . . .  , . . . .  , . . . .  , . . . .  , . 

1.00 

0.75 

~ 0 . 5 0  - ; : " " - ' ~ ; c : :  

© 
Exact 

o c = 0.01 0.25 r o a = 0.03 

0 . 0 0 - "  . . . . . . . . . . . . .  ' . . . .  ' . . . .  ' 
0.0 0.5 1.0 1.5 2.0 2.5 xl 0 "3) 

Time, x 

Fig. 4. The effects o f  standard deviation for (r = 0.0l and 
o = 0.03 on the accuracy of the estimate for triangular ramp 

pulse at downstream location 5AZ. 

' ~ = 0 . - l u  " ' . . . .  ' " 1 mOO 

r r  0.50 
oC 

0.25 
~ ~ A z  

o 2 o , ~ .  

0 . 0 C _  ~ . . . . . . . . . . . . . . . . . . . . . . . . . .  
0.0 0.5 1.0 1.5 2.0 2.5 (xl 0 "3) 

Time, x 

Fig. 5. The effects of sensor locations 5AZ and 20AZ on the 
accuracy of the estimate for triangular ramp pulse, with 

a = 0.01. 



44 J.C. BOKAR and M. N. OZISIK 

, o o f  ....... .......... 5;; 
0,+f/ \ ..., ......... 

 .o+of/ 1 , "  ',. 

o oob+:.;.--Y 
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Fig. 6. Simulated measured temperatures at downstream 
locations 5AZ and 20AZ for double step pulse, with a = 0.01. 

1.0( + _ ,  _ , .  , . . . .  , . . . .  , . . . .  , . . . .  , . . . .  , :  

/ / ~  ~=0.01 
/ \ ,+.,, 

05< / \ / , , -  . . . . . . . .  20 z 

~- ,, \ 
-0.00 . . . . . . . .  "~ ' 

-0.50 ~ " 

-1.00 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ' . . . . .  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5(xl 03) 
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Fig. 8. Simulated measured temperatures at downstream 
locations 5AZ and 20AZ for sine curve pulse, with rr = 0.01. 
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Fig. 7. The effects of sensor locations 5AZ and 20AZ on the 
accuracy of the estimate for double step pulse, with a = 0.01. 
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Fig. 9. The effects of sensor locations 5AZ and 20AZ on the 
accuracy of the estimate for a sine curve pulse, with a = 0.01. 

locations.  Fo r  the 5AZ location,  the inverse solut ion 
tends to follow the discontinuit ies,  including the 
second step ; however,  the solut ion oscillates after the 
first jump.  The results f rom the 20AZ locat ion follow 
the pulse, bu t  canno t  predict  the sharp  corners  at  

all. 

Test case 3 : sine curve 
The inlet condi t ion  for the sine curve i l lustrated in 

Fig. 2c is assumed in the form 

F ( T ) =  { o n ( l l l l . l l ~ )  for 0 < ~ - . . < 1 . 8 × 1 0  -3 

for 1 . 8 x l 0  -3 <z<~z/"  

(19) 

The  measured  values for this test are represented in 
Fig. 8. Since the funct ion is smooth  over the whole 
t ime domain ,  the inverse analysis is quite accurate 
for bo th  locat ions 5AZ and  20AZ, as appa ren t  f rom 
Fig. 9. 

The  effect of  the sampling frequency on  the accu- 
racy of  es t imat ions  was also tested. Very high sam- 
piing rates (i.e. five t imes the value used in Figs. 3, 6, 8) 
produced generally the same results bu t  with  slightly 
more  oscillations a round  the discontinuit ies  and  a 
much  large compu ta t iona l  time. A smaller  sampling 
rate produced nearly identical results;  however,  an 
exceedingly large time step should  not  be chosen since 

the inverse p rob lem would then not  be able to resolve 
any change  in the funct ion tha t  did not  have a large 
enough  per iod to allow for more  than  a few time 
readings. 

A C R A Y  Y - M P  super compute r  was used for all 
computa t ions ,  with C P U  times ranging from 5 s for 
the t r iangular  r amp funct ion at  tr = 0.03 to 24 s for 
the sine curve at  tr = 0.01. The smaller values of  cr 
required more  C P U  time since a more  strict con- 
vergence cri terion is required by equa t ion  (15). 

The  conjugate  gradient  me thod  appears  to be very 
effective in es t imat ing the funct ional  form of  the 
u n k n o w n  timewise var ia t ions  of  the inlet tempera ture  
for laminar  flow inside a duct. 
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